Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults

نویسندگان

  • Mina Tashakori Computer Engineering Department Ferdowsi University of Mashhad Mashhad, Iran
  • Vahid Golmah Department of Computer Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur,Iran
چکیده مقاله:

Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) services. In ADSL systems, there are many variables giving some noise for classification and there are many fault patterns with overlapping data. Therefore, this paper proposes a multilayer perceptron (MLP) classifier integrated with Self Organization Map (SOM) models for fault detection and diagnosis (FDD) of occurred ADSL systems. The interest of this paper is to improve the performance of single MLP by dividing the fault pattern space into a few smaller sub-spaces using SOM clustering technique and triggering the right local classifier by designing a supervisor agent. The performances of this method are evaluated on the fault data of Iranian Telecommunication Company which develop ADSL services and then the proposed algorithm is also compared against single MLP. Finally, the results obtained by this algorithm are analyzed to increase user's satisfaction with reducing occurred faults for them with predicting before they face it.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”

هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...

15 صفحه اول

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

A New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort

Software project management has always faced challenges that have often had a great impact on the outcome of projects in future. For this, Managers of software projects always seek solutions against challenges. The implementation of unguaranteed approaches or mere personal experiences by managers does not necessarily suffice for solving the problems. Therefore, the management area of software p...

متن کامل

A Neural Network Based Approach for Transmission Line Faults

In this study, a neural network based methodology is proposed for power transmission line faults. The proposed method uses Probabilistic Neural Network (PNN) for classifying fault types and Resilient Propagation algorithm (RPROP) for detecting fault locations. Wavelet Transform is also proposed for feature selection and analysis. The hybrid system proposed in this study is tested using a simula...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 3

صفحات  125- 134

تاریخ انتشار 2017-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023